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Study Concerning Some Elasticity Characteristics
Determination of Composite Bars
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In this paper the authors propose a new method to determine the properties of a composite material made
from two different components: fiber glass cloth and resin. On the separation surface between the two
materials it is assumed that the continuity conditions concerning the tensors of stresses and strains between
these two components are totally satisfied. The constitutive equations were determined for each material
as functions of these components with respect to a local system of reference. Medium stresses and strains
were defined in order to establish the properties of the material as a whole. Considering the interdependence
existing at the level of those properties the constitutive equations of the composite have been found.
Mathematical expressions for elastic modulus and Poisson’s ratio have been also determined. A loading
with forces applied on a longitudinal as well on a perpendicular direction face to the fibers direction of the
composite is considered. We find out that the elastic properties along the fibers of the composite are closer
to the properties of the reinforcing fibers and the elastic properties perpendicular to the fibers of the composite
are closer to the matrix properties.
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The composite materials allow us to obtain a diversity
of mechanical properties but it turns out to be really difficult
to determine the mechanical characteristics as function
of fibers/matrix ratio. All methods of investigation of the
properties and behaviours of the composite materials
require the knowledge of a large number of elastic
constants, so, the models are very complex [1]. The
properties of composites depend on certain issues like:

- mechanical and elastical properties of the
constituents;

- volumetric fraction of the constituents;
- geometric arrangement of the constituents;
- adherence between the materials;
- the fibers length;
- manufacturing  process.
We can distinguish three types of methods used to

analyze the properties of composite materials:
- finding the extreme values using variational energy

theorems;
- finding the exact solution;
- semi-empirical approximations.
Lower and upper limits for elasticity modules of

composites having fibers with various diameters and
randomly disposed with a given volumetric proportion
were  found [2,3]. Similar studies for composites having
hexagonally disposed fibers with constant diameter were
made [2,4].

Some studies in order to obtain the exact solutions
considering the case of a square elementary cell in which
the section of the reinforcing component has a square form
were made [5, 6]. Although this kind of cell isn’t common
in practice, it has the advantage that allows a mathematical
transcription of the fiber-matrix interaction taking into
account simultaneously the differences between the
arrangements of the fibers over two different directions  of
the section composite. Based on these results was
proposed a model that allows the calculus of the shear
modulus [7].

A micro-mechanics analysis for the substances of the
composite  allowed the determination of the composite
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behaviour using the known properties of each individual
constituent and the particularities of interaction between
any  two different constituents [7]. This method has the
advantage of generating the hypotheses during analysis.
The result is a macro-mechanical evaluation for the
behaviour of the composite, considering the
heterogeneous compound as being a homogenous
transversally isotropic one, for which we can find the
properties taking into consideration several  fiber-matrix
combinations.

Based on theoretically-obtained results it was  proposed
the use of some simple relations which give good results
for Young’s modulus and Poisson’s ratio along the fibers
[8]. The other elastic coefficients can be only empirically
determined because they depend on a parameter
characterizing the fiber-matrix interaction, fiber geometry
and arrangement.

Some numerical results for a periodic arrangement of
fibers, using a finite differences method were obtained [9],
these numerical results corresponding very well to the
semi-empirical results obtained  for cylindrical fibers in
volumetric proportion of approximately 0,5 [8].

The properties of composite materials with spherical
inclusions using the finite element method were analyzed
[10].

The same finite element method was used and the
properties of a composite bar having long fibers with a
double periodicity in their arrangement over the section
of the bar was determined [11]. Moreover,  it was made a
probabilistic analysis for the properties of unidirectional
composites [12].

In [13-14] we find an analysis of the viscoelastic
behaviour of technical polymers and advanced materials
with epoxy resin.

The  previous theoretical results have been obtained
both for unidirectional composite as well as for multilayer
composites having a different fiber orientation for each
layer.

For composite having the reinforcing component built
as a two or three- dimensional fabric or randomly disposed
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we found only semi-empirical results  as a conclusion of a
statistical analysis [15].

Theoretical considerations. The determination of the
constitutive equations conecting the stress and strains
tensors

Since only some of the theories used to determine
composite materials’ characteristics have a solid
theoretical background, the obtained theoretical results
correspond more or less to those experimentally obtained.
Briefly, a  tensile stress will lead to an elongation following
the stress direction and an uniform compression can not
lead to an expansion/dilatation of the material. We can not
give credibility to any result contradicting even partially
these elementary truths.

The authors considered a composite bar made from two
different materials, so, the bar is basically heterogeneous.
We note with 1 the fibers material and with 2 the matrix
material. All calculus is related to a global reference system
having x3 axis along the bar, so, the x3  axis is perpendicular
to the axis  x1 and x2.

Considering  a local reference system for each and every
point of the bar placed on the separation surface between
materials. This reference system has its axis in such way
that:

- n axis perpendicular to the separation surface between
materials;

- t axis tangent to the separation surface from the bar’s
section;

- τ axis tangent to the separation surface, parallel with
the bar’s longitudinal axis.

Under external stress, in the composite for each material
will appear:

- a stress state:

    (1)

-a strain state:

  (2)

The next conditions must be fulfilled on the separation
surface between materials:

- continuity conditions for stresses:

(3)

- continuity conditions for strains:

 (4)

We note:

        (5)

where:

For   and   given by (6) and (8) there is no need
to use the index pointing to the constituent so we are
omitting it. Since the  stresses and strains  must fulfill the
continuity conditions on the separation surface between
materials, these tensors can be described by continuous
functions not depending on material or the area each
material separately occupies.

So, the constitutive equations connecting the stresses
and strains tensors have the form:

where:

and  E
i 
 is Young’s modulus for the material “i”; G

i 
 is the

sliding modulus for the material “i”; ν
i 
 Poisson’s ratio for

“i” material.
From (10) we obtain:

So, the  strain and stresses matrices  can be expressed
with respect to the components fulfilling the continuity

(6)

(7)

(8)

(9)

(11)

(10)

(12)

(13)
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conditions (3) and (4):

 

[I], [0] are the unit matrix and null matrix respectively.
The elastic characteristics of the bar with respect to the

global reference system and are presented above:

   

where:

     (19)

θ is the angle between n and x1 axes.
We make the following hypothesis: all the constituents

of the composite are placed the way that the whole
composite structure should have not a  relative sliding on
the common boundaries between constituents. This
means a perfect adherence between constituents. In these
conditions we may consider the composite as a continuous
material medium, so, we have only one constitutive
equation. This way, a homogenization of the composite
material is done.

We define:
- matrix of medium deformations:

(20)

- matrix of medium tensions:

  (21)

where S  is the surface of the bar’s transversal section and
Si  is the surface of the material “i” as part of the transversal
section.

According to the previous conditions, the constitutive
equation of composite has the form:

   (22)
or

 (23)

where [E] and [C]  are the  stiffness and flexibility  matrixes
of the entire composite.

The authors  concluded that the global elastic properties
of the composite bar depend also on the elastic properties
of the constituents as well as on their geometric distribution
into the section.

For composites reinforced with long fibers we can
identify an elementary repetitive cell across the section.
That’s why we can calculate the integrals from (20) and
(21) on the elementary cell and after repeating this calculus
for all the section we will obtain the geometrical distribution
of the components.

The classic theories consider the reinforcement and
matrix as being elastically parallel mediums.

So, based on the constitutive equation, [17, 18] we can
determine the elastic coefficients as follows:

- elasticity modulus transversally to the fibers

           (24)

- elasticity modulus along the fibers

(25)

- Poisson’s ratios coefficients

where:

(14)

(15)

(16)

(17)

(18)
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where V1  is the reinforcement volume fraction, V2 is the
matrix volume fraction, the form of them being:

 (28)

Experimental researches
We consider a composite bar built in epoxy resin

reinforced with long fibers glass. The two components have
the following elastic components:

- for the epoxy resin
1)Young elasticity modulus  E = 4500 MPa;
2)shearing modulus  G = 1600 MP;
3)transversal contraction coefficient (Poisson’s ratio)
   ν = 0.4;

- for fiber glass wires
1) Young modulus  E = 74000 MPa;
2) shearing modulus  G= 30000 MPa;
3) transversal contraction coefficient (Poisson’s ratio)
  ν = 0.25.

In figure 4 we present the variation of the transversal
contraction coefficient (Poisson’s ratio) νTT  which
characterizes the transversal deformation due to a unitary
stress perpendicular on the fibers. The coefficient stays
near by the value of the Poisson’s ratio for the matrix but
diminishing as function of the volume fraction  of the
reinforcing component. For comparison, for a volume
fraction  of reinforcing component V = 0.5 we have νLT=
0.259 and νTT=0.333.

(26)

(27)

In figure 1 we present the variation of the elasticity
modulus along the fibers, variation noted as EL  and
expressed as a function of the reinforcing component
volumetric ratio. The composite Young’s modulus of rises
proportionally with the reinforcement’s mass.

In figure 2 we present the variation of the elasticity
modulus over a direction perpendicular to the fibers,
variation noted with Eτ. That has a relatively slow evolution
with respect to the volume fraction of the reinforcing
component  having smaller values than EL. The explanation
consists in the fact that we can find portions with only epoxy
resin on a direction perpendicular on the fibers.

In figure 3 we presented the variation of the transversal
contraction coefficient (Poisson’s ratio) νLT, expressed as
a function of the volume fraction of the reinforcing
component. This variation is characteristic for the
transversal strain due to a longitudinal unitary stress and
tends very fast to the value of the Poisson’s ratio of fibers.
We can assume that, beginning with the volume fraction
of the fibers V=0.3, the transversal contraction coefficient
of the composite is very close to the transversal contraction
coefficient of the reinforcing component.

Fig. 1. The variation of Young’s modulus along the fibers in the
reference system V, EL

Fig. 2 The transversal variation of Young’s modulus with respect to
the reference system V, ET

Fig. 3. The variation of the transversal contraction coefficient
(Poisson’s ratio) νLT as function of the volumetric ratio of the

reinforcing component with respect to the reference system V, νLT

Fig. 4. The variation of transversal contraction coefficient (Poisson’s
ratio)  νTT  as function of the volumetric ratio of reinforcing

component with respect to the reference system V,  νTT

The most important elastic constant of a material is the
elasticity modulus.For  its determination, a device was
used, presenting the loading scheme from figure 5, where
the test boards were fixed.

The shape and the dimensions of the test boards are
presented in figure 6.

Successive charges, were applied  and the displacement
was measured using a comparative  device .
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For the calculation of the elasticity modulus the following
formula was used:

 (29)

where
Lo= the distance between the supports [mm];
b = the width of the test board [mm] ;
h = the thickness of the test board [mm];
ΔP = the variation of the external loading [N];
Δf = the variation of the displacement [mm].

Fig. 5. Experimental setup: (e) - test board; (C) - comparative device;
(P) - external loading

Fig. 6. Shape and dimessions of the test boards

Measurements were made for test boards made of resin
(E = 4500, ν = 0.4) reinforced with glass fibres (E = 74000,
ν = 0.25), for three volume fraction of the reinforcing
component. The results are presented in table 1.

The most used formula for the calculus of the elasticity
modulus for a biphasic composite material is (see for
example [15, 16]):

EL = E1V1 + E2V2.  (30)

Table 1
EXPERIMENTAL MODULUS OF ELASTICITY

Table 2
COMPARATIVELY RESULTS OF THE MODULUS OF ELASTICITY

In table 2 are comparatively presented the results
obtained through the relations (25) and (30) and the
experimental ones.

If the coefficients of  Poisson’s ration have the same
value, for both constituents, then the relations (25) and
(30) are identical.

If the constituent materials have Poisson’s ratio differ
very much one from another, then just the formula (25)
will supply us a result close by of reality.

Conclusions
We notice that along the fibers the elastic properties of

the composite are similar to the elastic properties of the
reinforcement while perpendicular on the fibers the elastic
properties of the composite are close to matrix properties.

Beside these specific conclusions we can make some
general conclusions according to the elastic properties of
the composite depending on:

- elastic properties of the constituents;
- volumetric proportion of the constituents;

- constituents’ distribution across the section;
Also the composite reinforced with long fibers behaves

like a homogeneous material having transversal isotropy.
The authors consider that the use of these results and

formulas is suitable in the calculus of structures made of
composite materials, where it is compulsory to appreciate
the mechanical behavior based on the properties of the
homogeneous materials used. Because the properties of
the composites depend on fibers orientation one could
optimize the use of the properties of the material if the
fibers are arranged along the maximum stress direction.
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